
December 2008 $9.95 www.StickyMinds.com

The Print Companion to

PUT ON YOUR
THINKING CAP
A fresh look at

test improvement

2008 SALARY SURVEY
RESULTS INSIDE!

BETTER SOFTWARE

The Print Companion to StickyMinds.com

What's a manager to Do?

FINDING YOUR PLACE ON
A SELF-ORGANIZING TEAM

16 BETTER SOFTWARE DECEMBER 2008 www.StickyMinds.com

Test Connection

A Map by Any Other Name
by Michael Bolton

Through most of the ’90s, I worked
for Quarterdeck, a company that made
memory management software for PCs.
Memory management tools were impor-
tant in those days because programs had
been developed for the MS-DOS oper-
ating system, which was in turn devel-
oped for a processor that provided only
one megabyte of address space. When
more powerful processors appeared
on the scene, they provided access to
vastly more memory, but DOS programs
couldn’t get at extra memory without
some fairly sophisticated trickery. One
of the approaches was based on map-
ping—making physical memory from far
outside DOS’s address space appear in a
window that was inside DOS’s address
space.

For a long time, I found the concept
difficult to understand. I knew some-
thing about mapping in cartography,
and I knew that a mathematical function
is sometimes referred to as a mapping,
but I’d never heard the word used to de-
scribe making something appear some-
where else. Things got easier to under-
stand when I considered mapping more
generally and realized that maps are
links to an idea and a representation—
literally, a “re-presentation” of the idea.
So a mapping, in a general sense, can
take the form of charts, graphs, draw-
ings, or diagrams but might also appear
as tables or lists.

When we talk about test coverage,
we might be talking about covering a
map that represents the product or some
aspect of it—a functional diagram or a
process workflow. But we might also de-
cide to cover a map—or more accurately
a mapping—that presents testing ideas
in a non-graphical form. Here are a few
examples:

Use a requirements document as your
map. Many test groups translate require-
ments documents from one form (“The
input field shall accept up to twenty
characters”) into another (“Verify that
the input field accepts up to twenty

characters”). This is not only a waste of
time but also, potentially, a directive to-
ward weak testing. Instead of rewriting
the document, try testing directly from
it. Identify and prioritize statements in
the document, using them to trigger test
ideas. Checkmark and annotate require-
ments statements as they’re tested, or
describe tests in some kind of summary
form, pointing to data tables or output
files rather than reproducing them. Use
the annotated document to guide re-
views of testing sessions between a tester
and a test manager or project lead. Com-
bine the discussion and the annotated re-
quirements document to check whether
test coverage is satisfactory.

Requirements documents and re-
quirements tools are intended to cap-
ture and specify someone’s intentions
for some aspect of the product. These
specifications often focus on functional
attributes and sometimes pay less at-
tention to the parafunctional (some say
non-functional) aspects. While it’s likely
that much has been learned or changed
since the requirements were first iden-
tified, in my experience it’s somewhat
less likely that the document or tool has
been updated to reflect the new informa-
tion. Requirements-based test planning
may guide the tester toward a heavily

confirmatory approach, rather than a
more investigative one. So don’t let your
test coverage stop here; diversify and use
other approaches, too.

Create a map directly from the user
interface. While interacting with the
product, develop a mind map or a list
in hierarchical outline form of the menu
and submenu options, dialogs, wizards,
buttons, context menus, and other in-
terface options that the product appears
to provide. Annotate or detail your map
with descriptions of how you tested each
item. This approach details coverage for
the options that are apparently available
to the end-user, but it may be weak in
terms of low-level functionality, data in-
tegrity, long-term reliability, and so on.
It also fails to account for functions that
may be available or necessary but not
immediately visible. Diversifying your
coverage ideas will mitigate the risk of
missing something important in the UI.
When I miss something using this ap-
proach, I ask myself whether I need to
explore more methodically or whether
features are buried where end-users
might not find them, either.

Map the risks. Use review and brain-
storming to identify important plausible
risks in the product and optionally list
specific test ideas. Then perform tests

IS
TO
CK
PH
O
TO

 www.StickyMinds.com DECEMBER 2008 BETTER SOFTWARE 17

Qualitative evaluation of coverage can
be troublesome, too, because quality—
“value to some person,” in Jerry Wein-
berg’s definition—is subjective, indefinite,
and uncountable. But test completeness
is always a subjective and arbitrary con-
cept. Any map tells you something you
might want to know, but no map can tell
you everything. So we need to develop
diversified sets of ideas about coverage
and how we map it. Then we check,
explore, and compare them to confirm
what we believe we know, to guide dis-
covery of what we don’t, and to help tell
the story of where we’ve been and what
we’ve done. {end}

designed to expose the problems that
you’ve anticipated, checking off ex-
isting risks or tests, while keeping your
eyes and mind open to new risk ideas.
This approach can help drive coverage
toward problems that matter. Our own
hypotheses about risk are valuable, but
we’re all likely to be limited and con-
strained by our biases, so work with
other people and use bug taxonomies or
cheat sheets (see below) to generate fresh
ideas. Ongoing testing may suggest that
we’re well-defended against certain risks
and highly exposed to others, so revisit,
review, and revise the risk list frequently
to identify what’s been covered and what
hasn’t.

Completely cover some defined corner
of the domain space. Doug Hoffman’s
story of the integer square root function
on the MASPAR processor is a case in
point. He considered a number of cov-
erage models to reduce the number of
tests to run, and then it occurred to him:
Why not try all 4,294,967,296 possible
integer inputs? Using automation, he
prepared a test that covered the entire
input domain for that particular function
in a few minutes. This wasn’t complete
test coverage for the whole processor,
nor even for all of the possible risks for
that function (like stress or flow or per-
formance problems), but he did cover
the entire map of its input values.

Map operational models, use cases,
or tasks. Use cases or business process
workflows can be useful in identifying
places where we need to test. Whether
you’re provided with a list or develop
one yourself, you can devise tests to
cover the list. On the other hand, it’s
important to question use cases. I’ve
seen a lot that are very tidy and heavily
idealized, but I’ve never seen one that
describes how people actually work in
practice. Things are rarely as messy in a
use case as they are in the real world.

Use a set of heuristic guidewords or
test ideas. James Bach’s Heuristic Test
Strategy Model, Elisabeth Hendrickson’s
Test Heuristics Cheat Sheet, and Michael
Hunter’s You Are Not Done Yet models
are all excellent checklists for guiding ex-
ploration of some aspect of some model
of the program. Use these or develop
your own models. Vary the product el-
ements you look at, the quality criteria

you look for, and the test techniques you
perform. Plot tests against coverage ideas
as you …

Work from a test matrix. Prepare a
spreadsheet. Scribble a list of test ideas
down the y-axis and list aspects of
some test coverage model—product el-
ements, quality criteria, platforms, test
techniques—across the x-axis. As an
experiment, create multiple sheets using
the same tests, but with a different cov-
erage model on each sheet, and observe
how a single test can provide coverage
in a number of different dimensions. For
a given coverage model, denser coverage
of the matrix suggests (but does not
prove) deeper coverage of the particular
set of ideas on that table.

Quantitative measures of coverage
can be troublesome because they are
so easily subject to reification error—
treating conceptual things like test cases
or requirements statements as though
they were units instead of containers for
ideas. When we apply models, though,
we begin to enter a qualitative world.

Test Connection

What do your maps look like?
How do you describe coverage

to clients and your project
community?

Follow the link on the StickyMinds.com
homepage to join the conversation.

What do your maps look like? How
do you describe coverage to
clients and your project community?

Follow the link on the StickyMinds.com homepage
to join the conversation.

The Award-Winning-Est Agile Lifecycle
Management Solution

Three�time Jolt Product Excellence award winner in 2006,
2007 & 2008 for project management tools

Two-time SD Times 100 award winner for tools �that made
December 2007 a far more productive and efficient time
to code than January 2007."

Forester Research Says� "Rally designed the requirements
management capabilities in Rally Enterprise, a
software-as-a-service (SaaS) ALM solution, to suit teams using
Agile processes. The product performs flawlessly in this
regard..."

Get your FREE trial of Rally Enterprise at www.rallydev.com/bsm
no
download, no installation,
no commitment

